Search results for "HYDROGEN TANK"

showing 5 items of 5 documents

Innovative method to estimate state of charge of the hydride hydrogen tank: application of fuel cell electric vehicles

2021

International audience; Significant attention has been paid to metal hydrides (MH) as an environmentally friendly and safe way to store hydrogen. This technology has considerable potential for the application of embedded hydrogen storage in fuel cell electric vehicles, but its widespread application faces a major problem in terms of estimating the remaining hydrogen amount in the tank. In this work, a new method is proposed for estimating the state of charge (SoC) of the hydrogen hydride tank (HHT) by application of piezoelectric material. The idea is to cover the entire inner wall of the metal-hydride tank with a layer of piezoelectric material. During the process of hydrogen absorption, t…

0209 industrial biotechnologyMaterials scienceHydrogen020209 energychemistry.chemical_element02 engineering and technologyHydrogen tank7. Clean energy[SPI.MAT]Engineering Sciences [physics]/Materials[SPI.AUTO]Engineering Sciences [physics]/AutomaticMetal020901 industrial engineering & automation0202 electrical engineering electronic engineering information engineering[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]Electrical and Electronic Engineering[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]Waste managementHydride[SPI.NRJ]Engineering Sciences [physics]/Electric powerPiezoelectricityEnvironmentally friendlyState of chargechemistryHardware and ArchitectureMechanics of MaterialsModeling and Simulationvisual_artvisual_art.visual_art_medium[PHYS.MECA.THER]Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph]Fuel cellsSoftware
researchProduct

Static and Dynamic Performance Tests on Room Temperature Hydride Tank

2014

Hydrogen Storage Hydride Hydrogen Tank
researchProduct

Development of a modular room-temperature hydride storage system for vehicular applications

2016

The subject of this paper concerns the development of a vehicular hydrogen tank system, using a commercial interstitial metal hydride as storage material. The design of the tank was intended to feed a fuel cell in a light prototype vehicle, and the chosen hydride material, Hydralloy C5 by GfE, was expected to be able to absorb and desorb hydrogen in a range of pressure suitable for this purpose. A systematic analysis of the material in laboratory scale allows an extrapolation of the thermodynamic and reaction kinetics data. The following development of the modular tank was done according to the requirements of the prototype vehicle propulsion system and led to promising intermediate results…

Interstitial metalComputer sciencePrototype vehicle02 engineering and technologyPropulsionHydrogen tankPropulsion010402 general chemistry01 natural sciencesHydrogen storageSorption proceRange (aeronautics)General Materials ScienceProcess engineeringFlexibility (engineering)Hydridebusiness.industryHydrideFuel cellVehicular applicationsReaction kineticGeneral ChemistryModular designHydrogen storage021001 nanoscience & nanotechnology0104 chemical sciencesTanks (containers)Computer data storageModular approach0210 nano-technologybusinessHeat management
researchProduct

Energy management of a thermally coupled fuel cell system and metal hydride tank

2019

International audience; Being produced from renewable energy, hydrogen is one of the most efficient energy carriers of the future. Using metal alloys, hydrogen can be stored and transported at a low cost, in a safe and effective manner. However, most metals react with hydrogen to form a compound called metal hydride (MH). This reaction is an exothermic process, and as a result releases heat. With sufficient heat supply, hydrogen can be released from the as-formed metal hydride. In this work, we propose an integrated power system of a proton exchange membrane fuel cell (PEMFC) together with a hydride tank designed for vehicle use. We investigate different aspects for developing metal hydride…

PILE A COMBUSTIBLEMaterials scienceHydrogenExothermic processHYDROGEN TANKIntermetallicEnergy Engineering and Power Technologychemistry.chemical_elementProton exchange membrane fuel cellENERGIE02 engineering and technology010402 general chemistry7. Clean energy01 natural sciences[SPI.MAT]Engineering Sciences [physics]/Materials[SPI.AUTO]Engineering Sciences [physics]/AutomaticHydrogen storage[SPI]Engineering Sciences [physics]Operating temperatureTHERMAL COUPLINGENERGY MANAGEMENT[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph][SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]COUPLAGE[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Mechanics of the fluids [physics.class-ph]Renewable Energy Sustainability and the Environmentbusiness.industryHydride[SPI.NRJ]Engineering Sciences [physics]/Electric power021001 nanoscience & nanotechnologyCondensed Matter PhysicsFUEL CELL0104 chemical sciencesRenewable energyFuel TechnologyChemical engineeringchemistryHYDROGENE[PHYS.MECA.THER]Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph]0210 nano-technologybusiness
researchProduct

Nanostructured Materials and Systems for Hydrogen Technology

2011

hydrogen storage nanostructuring hydrides ball milling borohydrides hydrogen tank nanoconfinement
researchProduct